35 research outputs found

    Pythagorean fuzzy Muirhead mean operators in multiple attribute decision making for evaluating of emerging technology commercialization

    Get PDF
    In today’s world, with the advancement of technology, several emerging technologies are coming. Faced with massive emerging technologies which are the component of the technology pool, how to identify the commercial potential of emerging technologies in theory and practice is an important problem. The scientific approach to the selection of these emerging technologies is one of the main objectives of the research. In this paper, we extend Muirhead mean (MM) operator and dual MM (DMM) operator to process the Pythagorean fuzzy numbers (PFNs) and then to solve the multiple attribute decision making (MADM) problems. Firstly, we develop some Pythagorean fuzzy Muirhead mean operators by extending MM and DMM operators to Pythagorean fuzzy information. Then, we prove some properties and discuss some special cases with respect to the parameter vector. Moreover, we present some new methods to deal with MADM problems with the PFNs based on the proposed MM and DMM operators. Finally, we verify the validity and reliability of our methods by using an application example for potential evaluation of emerging technology commercialization, and analyze the advantages of our methods by comparing with other existing method

    A Comprehensive Survey on Database Management System Fuzzing: Techniques, Taxonomy and Experimental Comparison

    Full text link
    Database Management System (DBMS) fuzzing is an automated testing technique aimed at detecting errors and vulnerabilities in DBMSs by generating, mutating, and executing test cases. It not only reduces the time and cost of manual testing but also enhances detection coverage, providing valuable assistance in developing commercial DBMSs. Existing fuzzing surveys mainly focus on general-purpose software. However, DBMSs are different from them in terms of internal structure, input/output, and test objectives, requiring specialized fuzzing strategies. Therefore, this paper focuses on DBMS fuzzing and provides a comprehensive review and comparison of the methods in this field. We first introduce the fundamental concepts. Then, we systematically define a general fuzzing procedure and decompose and categorize existing methods. Furthermore, we classify existing methods from the testing objective perspective, covering various components in DBMSs. For representative works, more detailed descriptions are provided to analyze their strengths and limitations. To objectively evaluate the performance of each method, we present an open-source DBMS fuzzing toolkit, OpenDBFuzz. Based on this toolkit, we conduct a detailed experimental comparative analysis of existing methods and finally discuss future research directions.Comment: 34 pages, 22 figure

    The Preparation of a Challenging Superconductor Nb<sub>3</sub>Al by Exploiting Nano Effect

    No full text
    The Nb3Al superconductor with excellent physical and working properties is one of the most promising materials in high-magnetic-field applications. However, it is difficult to prepare high-quality Nb3Al with a desired superconducting transition temperature (Tc) because of its narrow phase formation area at high temperatures (>1940 °C). This work reports a method to prepare stoichiometric Nb3Al powder samples at a relatively low temperature (1400 °C) by exploiting the nano effect of Nb particles with pretreatment of Nb powder under H2/Ar atmosphere. The obtained Nb3Al samples exhibit high Tc’s of ~16.8K. Based on density functional theory (DFT) calculations and statistical mechanics analysis, the crucial role of quantum effect in leading to the success of the preparation method was studied. A new measure of surface energy (MSE) of a model particle is introduced to study its size and face dependence. A rapid convergence of the MSE with respect to the size indicates a quick approach to the solid limit, while the face dependence of MSE reveals a liquid-like behavior. The surface effect and quantum fluctuation of the Nbn clusters explain the success of the preparation method

    A Subtle Network Mediating Axon Guidance: Intrinsic Dynamic Structure of Growth Cone, Attractive and Repulsive Molecular Cues, and the Intermediate Role of Signaling Pathways

    No full text
    A fundamental feature of both early nervous system development and axon regeneration is the guidance of axonal projections to their targets in order to assemble neural circuits that control behavior. In the navigation process where the nerves grow toward their targets, the growth cones, which locate at the tips of axons, sense the environment surrounding them, including varies of attractive or repulsive molecular cues, then make directional decisions to adjust their navigation journey. The turning ability of a growth cone largely depends on its highly dynamic skeleton, where actin filaments and microtubules play a very important role in its motility. In this review, we summarize some possible mechanisms underlying growth cone motility, relevant molecular cues, and signaling pathways in axon guidance of previous studies and discuss some questions regarding directions for further studies

    An efficient access to the synthesis of novel 12-phenylbenzo[6,7]oxepino[3,4-b]quinolin-13(6H)-one derivatives

    No full text
    An efficient access to the tetracyclic-fused quinoline systems, 12-phenylbenzo[6,7]oxepino[3,4-b]quinolin-13(6H)-one derivatives 4a–l, is described, involving the intramolecular Friedel–Crafts acylation reaction of 2-(phenoxymethyl)-4-phenylquinoline-3-carboxylic acid derivatives 3a–l aided by the treatment with PPA (polyphosphoric acid) or Eaton’s reagent. The required starting compound (2) was obtained by FriedlĂ€nder reaction of 2-aminobenzophenone (1) with 4-chloroethylacetoacetate by using CAN (cerium ammonium nitrate, 10 mol %) as catalyst at room temperature. The substrates 3a–l were prepared through one-pot reaction of ethyl 2-(chloromethyl)-4-phenylquinoline-3-carboxylate (2) and substituted phenols. Our developed strategy, involving a three-step route, offers easy access to tetracyclic-fused quinoline systems in short reaction times, and the products are obtained in moderate to good yields

    DDAH1 Protects against Acetaminophen-Induced Liver Hepatoxicity in Mice

    No full text
    In many developed countries, acetaminophen (APAP) overdose-induced acute liver injury is a significant therapeutic problem. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is a critical enzyme for asymmetric dimethylarginine (ADMA) metabolism. Growing evidence suggests that liver dysfunction is associated with increased plasma ADMA levels and reduced hepatic DDAH1 activity/expression. The purpose of this study was to investigate the involvement of DDAH1 in APAP-mediated hepatotoxicity using Ddah1-/- and DDAH1 transgenic mice. After APAP challenge, Ddah1-/- mice developed more severe liver injury than wild type (WT) mice, which was associated with a greater induction of fibrosis, oxidative stress, inflammation, cell apoptosis and phosphorylation of JNK. In contrast, overexpression of DDAH1 attenuated APAP-induced liver injury. RNA-seq analysis showed that DDAH1 affects xenobiotic metabolism and glutathione metabolism pathways in APAP-treated livers. Furthermore, we found that DDAH1 knockdown aggravated APAP-induced cell death, oxidative stress, phosphorylation of JNK and p65, upregulation of CYP2E1 and downregulation of GSTA1 in HepG2 cells. Collectively, our data suggested that DDAH1 has a marked protective effect against APAP-induced liver oxidative stress, inflammation and injury. Strategies to increase hepatic DDAH1 expression/activity may be novel approaches for drug-induced acute liver injury therapy

    Hepatic DDAH1 mitigates hepatic steatosis and insulin resistance in obese mice: Involvement of reduced S100A11 expression

    No full text
    Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is an important regulator of plasma asymmetric dimethylarginine (ADMA) levels, which are associated with insulin resistance in patients with nonalcoholic fatty liver disease (NAFLD). To elucidate the role of hepatic DDAH1 in the pathogenesis of NAFLD, we used hepatocyte-specific Ddah1-knockout mice (Ddah1HKO) to examine the progress of high-fat diet (HFD)-induced NAFLD. Compared to diet-matched flox/flox littermates (Ddah1f/f), Ddah1HKO mice exhibited higher serum ADMA levels. After HFD feeding for 16 weeks, Ddah1HKO mice developed more severe liver steatosis and worse insulin resistance than Ddah1f/f mice. On the contrary, overexpression of DDAH1 attenuated the NAFLD-like phenotype in HFD-fed mice and ob/ob mice. RNA-seq analysis showed that DDAH1 affects NF-ÎșB signaling, lipid metabolic processes, and immune system processes in fatty livers. Furthermore, DDAH1 reduces S100 calcium-binding protein A11 (S100A11) possibly via NF-ÎșB, JNK and oxidative stress-dependent manner in fatty livers. Knockdown of hepatic S100a11 by an AAV8-shS100a11 vector alleviated hepatic steatosis and insulin resistance in HFD-fed Ddah1HKO mice. In summary, our results suggested that the liver DDAH1/S100A11 axis has a marked effect on liver lipid metabolism in obese mice. Strategies to increase liver DDAH1 activity or decrease S100A11 expression could be a valuable approach for NAFLD therapy

    GCN2 deficiency ameliorates doxorubicin-induced cardiotoxicity by decreasing cardiomyocyte apoptosis and myocardial oxidative stress

    No full text
    The clinical use of doxorubicin for cancer therapy is limited by its cardiotoxicity, which involves cardiomyocyte apoptosis and oxidative stress. Previously, we showed that general control nonderepressible 2 (GCN2), an eukaryotic initiation factor 2α (eIF2α) kinase, impairs the ventricular adaptation to chronic pressure overload by affecting cardiomyocyte apoptosis. However, the impact of GCN2 on Dox-induced cardiotoxicity has not been investigated. In the present study, we treated wild type (WT) and Gcn2−/− mice with four intraperitoneal injections (5 mg/kg/week) to induce cardiomyopathy. After Dox treatment, Gcn2−/− mice developed less contractile dysfunction, myocardial fibrosis, apoptosis, and oxidative stress compared with WT mice. In the hearts of the Dox-treated mice, GCN2 deficiency attenuated eIF2α phosphorylation and induction of its downstream targets, activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), and preserved the expression of anti-apoptotic factor Bcl-2 and mitochondrial uncoupling protein-2(UCP2). Furthermore, we found that GCN2 knockdown attenuated, whereas GCN2 overexpression exacerbated, Dox-induced cell death, oxidative stress and reduction of Bcl-2 and UCP2 expression through the eIF2α-CHOP-dependent pathway in H9C2 cells. Collectively, our data provide solid evidence that GCN2 has a marked effect on Dox induced myocardial apoptosis and oxidative stress. Our findings suggest that strategies to inhibit GCN2 activity in cardiomyocyte may provide a novel approach to attenuate Dox-related cardiotoxicity. Keywords: GCN2, Doxorubicin, Cardiotoxicity, Oxidative stress, CHOP, UCP

    screeningofmetaboliteregulatinglacticacidproductionofexiguobacteriumaurantiacumatcc49676bymetabolicfingerprintanalysis

    No full text
    A strain of Exiguobacterium aurantiacum ATCC49676 was found to be of great potential to produce lactic acid(LA). In order to screen the metabolites that might regulate or affect the acid yield, a relative higher LA production condition was defined through full factorial experiment design. Fresh cultures harvested from the basic and the higher LA production conditions were subjected to metabolic fingerprint analysis by gas chromatography-mass spectrometry. Significance analysis indicated a distinct change of an intercellular metabolite-L-glutamic acid (Glu). When ATCC49676 was treated by Glu, LA yield declined with the increasing added Glu concentrations. Relative enzyme quantification confirmed that Glu decreased the intracellular lactate dehydrogenase content. This study proved the merit of metabolic fingerprint analysis in exploring the phenotype specific intracellular metabolite and its potential roles in improving industrial fermentation efficiencies

    Magnetic and photoactive colloidal shuttles for active cargo transportation

    No full text
    Colloidal shuttles are micro/nanoscale motors that display controllable cargo loading/release and programmable navigation, which are emerging delivery vehicles at the small scale. Here we present a hydrogen peroxide-fueled catalytic colloidal shuttle composed of a hematite cube half coated with platinum, i.e. a Pt/hematite Janus cube, which can be remotely controlled with ease by light and magnetic field. Interestingly, the dynamic behaviors of the Pt/hematite motor under light illumination in lower fuel concentration are similar to those Pt-based motors in higher fuel concentration without UV light, including the self-propulsion direction and the interaction with passive particles. In lower fuel concentration, we demonstrate the ability of the Pt/hematite motor for light-switchable cargo loading and release, and programmable and directional transportation of cargoes using the intrinsic magnetic property of hematite. Our work offers an efficient colloidal shuttle that operates at favorable fuel concentration and light intensity in comparison to earlier reported cargo-towing colloidal motors, which should find applications as microscale delivery vehicles, particularly for cargo transportation on microchips
    corecore